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LARGE OR SMALL MOLECULES IN SOLUTION

By R. K. BULLOUGHT

Department of Mathematics, The College of Science and Technology,
Manchester 1

\
PN

=\
/ \

(Communicated by H. Lipson, F.R.S.—Received 6 August 1964—
Revised 2 December 1964)

v &

D <

=

olm CONTENTS

m =)

- 5 PAGE PAGE
1. INTRODUCTION 388 5. DISCUSSION OF THE SCATTERING CROSS-

I O SECTIONS FOR SMALL MOLECULES 406

=w 2. THE SCATTERED MICROSCOPIC FIELD 390

- N

52 3. THE SCATTERED INTENSITY FROM MOLE-~- 6. SCATTERING FROM LARGE MOLECULES 409

EQ CULES WITH LARGE OR SMALL CORRELA-

55 i TION DISTANGES 397 7. ERRORS IN MOLECULAR WEIGHTS BECAUSE

RZLO OF NON-ADDITIVE SCATTERING 414

0‘2 4. SCATTERING FROM SMALL MOLECULES:

§§ EINSTEIN’S SCATTERING FORMULAE 402 REFERENCES 419

o=

The scattering equations for two-component fluids are formulated so that individual scattering
processes take place in vacuo. A gauge transformation is made which transforms these processes to
ones taking place in a medium of refractive index m. Certain previously controversial factors
apparently associated with the internal field are thereby isolated and shown to be multiple
scattering terms. The formulae for the scattered intensity and turbidity of a two-component fluid of
small molecules are calculated by an entirely molecular argument; they agree with the forms
usually quoted as Einstein’s formulae except that the additional term reported previously is
confirmed. It is conjected that a very precise identity exists between the phenomenological
and molecular treatments of scattering when multiple scattering is properly included. It is
shown that the concept of an excess molecular polarizability in a two-component system of
small molecules is valid only up to an approximation of single scattering: but the concept of
excess scattering remains valid in the multiple scattering theory of such systems. It is also
shown that without additional assumptions both these concepts cease to be valid even in the
single scattering approximation when the solute molecules are large. These assumptions amount
to a ‘uniform distribution’ (in a sense here specified) of the solvent round the solute in regions
of radius of the order of #A: they can be interpreted as hydration (or solvation) conditions.
From a crude model of a macromolecular solution it is suggested that the Debye corrections which
derive from a finite molecular size to estimates of molecular weights determined by light scattering,
could be in error by as much as 1009, (~ 5%, of molecular weights) or perhaps even more:
estimates of molecular size by dissymmetry can also be in similar error. For a given solute, both
these and the molecular weight corrections should vary from solvent to solvent. As this has not been
reported experimentally, solutions of large molecules may satisfy the hydration conditions which are
indeed shown to be both necessary and sufficient for the formal reduction of the scattering equa-
tions to Debye’s form. It may therefore, be possible to use light scattering to investigate the state
of hydration of such molecules in a solvent and to investigate the three two-particle correlation
functions of such systems.

THE ROYAL A
SOCIETY /\

PHILOSOPHICAL
TRANSACTIONS
OF

1 Present address Nordisk Institut for Teoretisk Atomfysik, Copenhagen @, Denmark.

Vor. 258. A. 1090. (Price 12s.; U.S. $1.80) 49 [Published 11 November 1965

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. STOR ®
WWWw.jstor.org


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

388 R. K. BULLOUGH

1. INTRODUCTION

The purpose of this paper is threefold: first, to offer an independent argument in support
of the formula for the extinction coefficient of the transmitted light intensity (i.e. turbidity)
in a two-component fluid suggested by the author in a previous paper (Bullough 19634)
hereafter referred to as II (both the calculation here and that of I are based on the theory
of complex refractive index given earlier (Bullough 1962) and this earlier paper is referred
to as I). In particular it is purposed to confirm that the scattering of light from two com-
ponent systems of small molecules is not additive as was reported in II.

Secondly the paper purposes to show that, whilst the source of non-additivity of the scat-
tering from systems of small molecules becomes entirely unimportant when the molecular
weight of the solute is large enough (and particularly so for the important case of macro-
molecules with molecular weights of 100000 or more) the scattering from solutions of large
molecules can be non-additive for quite different reasons. We show in fact that if, and only if,
the molecular distributions of the two components satisfy hydration (or solvation) conditions
which may or may not obtain in any given system, is the scattering solely ‘excess’ scattering
of the solute in the solvent: the interpretation of the scattering as nothing but excess scatter-
ing has previously been unquestioned (except by Grimley 1961) when the solute molecular
weight M is high enough (see, for example, Flory & Bueche 1958).

The hydration conditions amount rather roughly to the condition that the region round
a polarisable particle is uniformly occupied by particles although preferential occupation
of the region by particles of one or other particular kind can remain. At an approximation
of single scattering it is sufficient to put conditions on the three two-particle correlation
functions of the system: if multiple scattering is also included these conditions must be
extended to the three and more particle correlation functions. If the particles of the two
different kinds display the same partial molar volumes the conditions on the two-particle
correlation functions amounts in simplest form to a condition of no ¢ota/ correlation between
pairs of particles of whatever kind : more generally the ‘total occupation of volume’ must
be uniform and uncorrelated. The finite resolving power of a system illuminated by light
of a finite wavelength A relaxes this condition to one which must hold true on the average
over regions of order 1A in radius. These results are demonstrated in detail in §6.
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— If these hydration conditions do not obtain it is not possible to abstract the ‘excess’
§ N scattering. It will be shown, indeed, that for a postulated situation which does not satisfy
OH these conditions but which may not be too remote from those occurring in real macro-
A= molecular solutions the scattering is not additive: further the non-additivity invalidates
=i an assumption of the sole significance of ‘excess’ scattering to the extent that the correc-
E 8 tions to molecular weights, which the finite size of the scattering units demand according

to the simple theory of Debye (1947), cease to have significance. Since these corrections
can certainly be 59, of M, neither these nor the corrections due to non-additivity can be
ignored. A fortiori measurements of molecular size by light scattering measurements, e.g.
from the dissymmetry, may have no meaning unless some conditions approximating suf-
ficiently to the hydration condition always obtain. It follows conversely that precise «
priori knowledge of M and molecular size may permit an investigation of the condition of
hydration of macromolecules in a solution. That the simple scattering theory is theoretically
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valid for large molecules only when such hydration conditions are satisfied has been noted
already in a preliminary report (Bullough 1960).

These two aims are carried through in §4 and in §§ 6 and 7 respectively. The third purpose
of the paper is to investigate the effect of multiple scattering on the estimated scattering
cross-sections. This theme necessarily runs through the whole of the paper, except §§ 6 and 7
where the considerations are related only to single scattering because uncertainty of the
form of the three two-particle correlation functions and a fortiori of the three- and more
particle correlation functions, in systems containing large solute molecules, makes investiga-
tion of the nevertheless numerically important multiple scattering terms too much of a
luxury. This is not the case for systems of small molecules, for which it is shown that up to
first order in multiple scattering the molecular theory with multiple scattering exactly
reproduces the result of the phenomenological theory (apparently a single scattering
theory) except for the small non-additive term. Here detailed knowledge of the correlation
functions is not required : the recurrence relations they satisfy are sufficient to prove identity
between the very complicated molecular terms and the relatively remarkably 51mp1e terms
which appear in Einstein’s (1910) phenomenological theory.

It is shown in the paper that multiple scattering terms can be grouped either as though
the individual scattering process takes place iz vacuo or in a medium of refractive index m:
the two formulations are essentially equivalent and in both cases the interference between
the totality of scattered waves in a system of many particles builds up the refractive index m
of the system. This is demonstrated for the formulation ‘iz vacuo’ in 1: the corresponding
formulation ‘in the medium’ must be given elsewhere. In II the complex refractive index
from I was used to find the extinction: at an approximation of single scattering a factor
9m~1 (m?-+ 2)~2 different from that of Einstein (1910) appeared. By formulating the scatter-
ing process ‘in the medium’ here and calculating the scattered intensity rather than the
extinction we show that, as hazarded in II, multiple scattering terms are just sufficient to
eliminate the (significant ~4 for m = 1-5) factor 9(m?-+2)~2

The calculation of the extinction in this formulation is a much more delicate matter:
in the process itis necessary to transform the Lorentz radiation reaction field ‘ to the medium’
and because this hasnot yet been completely achieved and because the calculation appears in
any case to bear a close formal relationship to field theoretical calculations of the self energy
of the electron we must consider it elsewhere. This transformation does, however, explain in
part the factor m~! in the extinction first reported by Rosenfeld (1951). The factor appears
there quite ‘naturally’ as is shown in II but its ‘obvious’ interpretation as of scattered in-
tensity in vacuo normalized against transmitted intensity in the medium is misleading. In-
stead, the factor is closely associated with the boundary conditions put into a very precise
description of the scattering system. Because we cannot consider the problem in such detail
here the omission of this factor in the result (4-29) for the extinction strictly speaking neither
confirms or denies whether such afactor should be included in any estimate of the scattering.
Within the terms implicit in the calculation below the factor should be omitted however,
and I believe (4-29) to be correct to an order of scattering well beyond the first order in
multiple scattering to which the calculation is carried out here—providing in the more
general case a suitable depolarization factor is inserted. Probably the most significant
conclusion from the multiple scattering theory as such is that firstly, scattering terms have

49-2
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390 R. K. BULLOUGH

no absolute significance and can be transformed from multiple scattering terms in the
in vacuo formulation to single scattering terms in the ‘in the medium’ formulation. Secondly,
a too precise physical interpretation of such terms can be very misleading: certainly the
same terms can play quite complementary roles in different contexts.

In the following §2 we formulate an expression for the scattered electric field iz vacuo
and transform it and the scattered magnetic field ‘to the medium’. In §3 we evaluate the
scattered intensity at an initially unilluminated point within the medium arriving from an
illuminated region ¥ in the medium containing many small scattering centres: the scattered
intensity is valid for both small and larger values of the correlation distances between the
small scattering centres. In §4 the extended Einstein formula is calculated to first order in
multiple scattering, that is one order more than in I1. In §5 the remarkably simple result of
§4 is discussed; in §6 the hydration conditions and sufficient conditions for the validity of
the usual formulae for the scattering from system of molecules with correlation distances
comparable with the wavelength of the incident radiation are discussed ; in § 7 a necessarily
rough estimate of the possible error introduced into estimates of molecular weights because
of failure of the formulae when no such conditions obtain is made.

2. THE SCATTERED MICROSCOPIC FIELD

The microscopic electric field vector e(x) at an arbitrary point X in or adjacent to a two-
component system of N, a-particles and N, b-particles isT (I (8-8)%):

Ng Ny
e(x) =E (x)+ 3 Ey + 2 K, (2-1)
Ja=1 Jvr=1
where By, = (VaVitkgU) f(r; ). P, f—a or b, (2-2a)
j(T) _ e—ikor/T’ Tj/j' = IXiﬂ_Xl (22b)
E(x) = uk e itz X = (%,9,2). (2-2¢)

In these relations U is the unit tensor and V, the usual gradient operator taken at the field
point x: E(x), with wave number £, = 27/A and polarization vector u taken perpendicular
to the z-axis, is the incident electric field and is the electric field at x i vacuo: this is aug-
mented by the scattered fields Eg;  of each of the particles of kind £ (= a or b) and labels
Jp=1,..., Ny assumed to have instantaneous positions X; . The word ‘instantaneous’ is
used here and in the following only to distinguish a quantity from its corresponding ‘average’
quantity. In this sense the P; are the instantaneous dipole moments of the particle j,
at x; 1 if By is omitted from (2-1), e(xiﬂ) is the instantaneous field polarizing the particle
1y at X; ; hence the induced dipole moments P; depend on the positions Xky(y =aor b)
of all particles.

1 We eventually particularize the situation by choosing the a-particles for the solvent and the b-particles
for the solute. This introduces an element of asymmetry into the problem not merited by the mathematics,
and as long as possible we treat « and b on equal footing. The eventual emergence of a solvent-solute asym-
metry from the underlying symmetry between the particles is a striking feature of all aspects of the theory
of two-component systems. This is no where better exemplified than in the theory of their optical scattering
as I hope will become clear in the following—expecially §4.

1 I (p.q) refers to equation (p.q) of I, that is of the author’s (1962) paper.
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With f(r) in the form of (2:24) E;; , 1s the scattered field at x from an induced dipole
moment Pj/; atx; in vacuo : thus (2-1) ignores contributions to e(x) from the scattered fields
from induced multipoles. We shall suppose that the point x lies in the medium although we
shall finally choose it to lie in an unilluminated portion of the medium, that is we choose
E(x) = 0 at the field point X: then (2-1) becomes the total scattered field at X in the un-
illuminated part of the medium. E induces the P, both directly and by the scattered fields of
the remaining N,+ N, —1 dipoles not at the point X; ; thus the Piﬂ are induced in part by
E, in part by single scattering from the neighbouring Pjy (y = a or b) induced by E, in part
by multiple scattering from Pjy induced by neighbouring P, (4 = a or b), and so on. There
is also multiple scattering between P,-ﬂ and itself with other induced dipoles as intermedi-
aries. The effect of multiple scattering is considerable and provides the key to an under-
standing of apparent discrepancies between the results of the several methods of calculating
the scattering—as noted in §1 and in II earlier. One very interesting result is that the
multiple scattering between Piﬂ and itself appears to have just the property required of it
of transforming the Lorentz radiation damping field, i.e. the equivalent field of the inter-
action between the scattering electrons of the system and their own radiation fields, from
a form appropriate to single scattering iz vacuo to a form appropriate to a scattering process
in a medium. This result has important consequences to the direct calculation of the ex-
tinction and is one of the keys to an understanding of the factor m~! which appeared in such
a calculation in II as we note in §1. In the calculation of extinction via the scattered in-
tensity the radiation damping can be neglected but equivalent multiple scattering terms
necessarily appear in a different guise and make an important contribution to the scattered
intensity: we must therefore, take multiple scattering into account implicitly in the follow-
ing, but we only evaluate explicitly the first order corrections it introduces. As noted in
§ 1 we also make a transformation of the scattering process ‘to the medium’: this is done by
an appropriate gauge transformation of the potentials of the scattered fields which incident-
ally has the effect of re-grouping some of the multiple scattering terms: in this way the calcu-
lation takes into account certain very significant multiple scattering terms of order higher
than the first. In so far as the ‘unilluminated’ medium is illuminated by the wave scattered
from the ‘illuminated” medium, the P; are induced by other dipoles in both parts of the
medium: we shall, however, restrict the P; entirely to the illuminated region of assumed
volume V and ignore secondary scattering from the scattered wave outside. A more precise
treatment requires a specification of the system and its boundary conditions together with
a development of multiple scattering theory inappropriate in the present context.

In order to transform the field (2-1) we note that, when the incident field E(x) has wave
number £, in vacuo as in (2-2¢), the statistical average of €(x) at a point X in the illuminated
part of the medium is the Maxwell electric field vector £(X) propagated with wave number
k = mky; m is therefore the refractive index of the medium. We transform ‘to the medium’
by a transformation which makes the individual scattering process in (2-1) depend on the
wavenumber £ of the medium rather than on the wavenumber £, of the vacuum. We
emphasize that the possibility of such a transformation does not pose two irreconcileable
physical interpretations of the individual scattering process. Individual scattering ‘in
the medium’ is from a screened ‘quasi-particle’ whose existence is merely representative
of a collective grouping of a selected set of multiple scattering terms. Because this grouping
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392 R. K. BULLOUGH

stems from a gauge transformation it is an arbitrary one and multiple scattering between
screened particles continues to make a significant contribution. Thus neither scattering
in vacuo or in the medium has that physical significance which simplifies the mathematical
analysis. Too precise a physical interpretation of selected sets of multiple scattering terms
leads indeed to apparent inconsistencies in the several calculations of scattered intensity as
noted above. It remains an open question whether there is a gauge or other transformation
which will lead to the simplification of the argument that the final formulae for the scatter-
ing from small molecules so strongly suggest.

In transforming ‘to the medium’ we recast e(x) of (2:1) to a form analogous to that
first used by Fixman (1955) for the one component system. The method is essentially a
trivial extension to the two-component system of that given by Mazur (1958) for the one-
component system. The transformation is a gauge transformation and the scattered
intensity should be invariant under it; but because of the changed boundary conditions
this is not quite so. We shall be obliged to comment on this again, but the demonstration of
the real invariance of the scattering must be given elsewhere as noted in § 1.

The field (2:1) is generated by a Hertz potential

m(X) = my(X) 7y (X),

where (V24K (%) = —4nq(X); (2-3a)
N
the source function q(x) is q(x) =Y Zﬂ P; d(x—x; ) (2:3b)
A jﬂzl

and d(x) is the three dimensional Dirac d-function differentiable to any order; (%)
satisfies the homogeneous equation. We have

e(x) - (V,V, -KU) ()
when E(x) = (V,V,+k%U) .7y (x),
while e(x) is the field corresponding to scalar and vector potentials
¢ =—Vym(X), a=1ikn(X).

With time dependence ei*, where w/c = k,, the choice of gauge is
1 .3‘ (¢eiwi) _|_V X (aeiwt) = 0. (24_)
cat * '

Introduce a Hertz potential #(x) such that
¢ =V, ®(x), a=imk,*(x), (2-5)

where m is initially an adjustable parameter to be fixed by the boundary conditions; the
choice of gauge is now
lc_j_t@eiwz) +V,. (ﬁeiwt) - ~ik0(m2~ 1) ggeimz (2-6)
and is the original choice (2-4) only if m is chosen equal to 1.
The field e(x) of (2-1) satisfies the partial differential equations

—ViaVinetkde = —4nkiq(x); V,.(e+4mq) = 0. (2:7)


http://rsta.royalsocietypublishing.org/

s |
PN

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MULTIPLE SCATTERING OF LIGHT BY LARGE MOLECULES 393
According to (2-5) e = (V,Vi+m?*3iU) & (2-8)
so that V2R(X) +m3#R(x) = (1/m?) {—4nq(x) + (m*—1) e(x)}. (2-9)

According to (2-9) the field e itselfis taken as part of the source function for e and this leads
to a regrouping of multiple scattering terms. An implicit integral equation for e is from (2-9)

#(x) — ;’%Lf(r) {;jzﬂpjﬁa(x'_xjﬂ)wi‘ﬂ (m2—1)e(x)|dx’ +#,(x).  (210)
We define fUr) = e"imborfy. p = |x—X'|, (2-11)

so that (2-10) is the solution of (2-3a) when m = 1. The source function of (2-9) given
explicitly in (2-10) is the rather obvious extension to a two-component system of Fixman’s
(1955) source function for a one component one.

The new potential #,(x) satisfies the homogeneous equation

V2R, m2hiR, = 0 (2-12)

and must be chosen to satisfy appropriate boundary conditions. In so far as the latter
must themselves be appropriate to the particular physical situation envisaged, the field
e(x) we derive by (2:8) on (2:10) is not necessarily identical with that of (2-1) as was
claimed by Mazur (1958) in a similar context: the distinction between the two e(x)
is one reason for apparent discrepancies in the formulae for the scattering cross sections as
we have noted. Certainly if we choose m == 1 thereby restoring the gauge (2-4) we regain
(2-1) precisely. However, we shall choose m to be the refractive index (> 1) of the medium
with the condition on the Maxwell field vector £(x) that

£(x) = " {2, By(x) + 1, B ()}, (2:13)

where n; = (Nyp(w))/V, f = a or b, is the average number density of particles of kind f:
n,P,(x) and n, P,(x) are the average total induced dipole moments per unit volume of the

a—a

particles of kinds @ and 4 respectively defined by

Np
<j S P, 0(x;, ) p(m)> —n,By(x) (2:14)
e
(cf. T for the comparable equation (4-5)). In the definitions of the average quantities
ngand ngP;, p(w) is the probability distribution of the grand canonical ensemble appropriate
to chemical potentials y,(f = a or ) of the two constituents, to a temperature 7" and to the
chosen volume V: it describes the probability of NV, a-particles and N, b-particles lying within
the volume V'in a configuration w = (X, , Xy , ..., Xy, ; X1,, Xy, ..., Xy,). (We shall not need
the orientational co-ordinates of I here.)

An investigation of the propagation of the Py(x) through a material medium in response
to the applied field (2-2¢) shows as we expect (cf. I, (5-4)) that

r)ﬁ(X) - upﬁe——ikz (2'15)

with & = mk,, and, if we define & (x) (cf. I, (8:7)) in terms of this m by (2-13), this defines this
m in the usual way as the refractive index of the medium. Surprisingly the solution (2-15)
must be scrutinized rather carefully when the system loses energy through scattering, but
we assume it valid here for the direct calculation of scattered intensity.
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We can also show that the average microscopic field (e(X) p(w)) is equal totheright hand
side of (2:13),1.e. A
(e(x) p(@)) =~ {n Pul(x) + 1, B, (%)} (2-16)

so we now choose #,(X) in (2:10) by making it consistent with (2:16). This puts boundary
conditions on our system which however we need investigate no further in a direct calcula-
tion of scattering. Since #,(X) is a solution of the homogeneous equation (2:12) it cannot
depend on the sources at X; and its average with p(w) is again #,(x). We therefore identify
m of (2:13), (2-15) and (2-16) with that in (2-10) and then find from this last equation that

Thus #,(x) 1s the Hertz vector of the average field (e(x) p(w)) and from (2-16) and (2-13)
is then the Hertz vector of £(x). From (2-8) and (2-10) it follows that

1 m2—1

e(x) = 2fv{(VxVx+k2U)f‘(r)}{% ZPJﬁS(Xj—X’)4(—ZT)e(x’)}dx’~|~é~5(x). (2:17)
I8

T om

Moreover, at a point X in the unilluminated medium &(x) == 0 and using this and (2-16)
with (2-13) after defining

T(x,x') = (V,V,+k2U) (e imbolr [m2y) (2:184)
we have at such a point X
e(x) — f F(x,x) .{}: [SP; 8(x'—x; ) —n,By(x')] - ("’%1) [e(x) — ?(x’)]}dx’.
|4 Ay
(2:18b)
Define T(x, %) = (V, V- k2U) (e ik )). (2:194)

Of the several ways of iterating (2:185) we choose the following: we use with 7" - |x" x|
and both X’ and X" inside the illuminated region V

e(x) ~6(x) =3 | T(X,X") {3,305, —X) —m B(x)}dx" (2190)
v ip

which relation we might obtain superficially by putting m - 1 in (2-185) remembering that
x' 1s illuminated. But bearing in mind that the parameter m of (2:18) from (2-10) has been
fixed as the refractive index (> 1) of the medium we obtain (2-195) in fact from (2-1)
using (2:16); since

e(x') ~ E(x)+3 [ T(x,x"). 3P, d(x"—x, ) dx’ (2:20)
gIv J
it follows from (2-14) that ’
(@) p()) -~ B(x) 3 | T, ). (1 By s (2:21)

identify the left-hand sides of (2-13) and (2:16) and eliminate E(x') from (2-20) by (2-21)
to obtain (2:195).

We now split the illuminated region V' of integration in (2-196) into two parts—v, a
small sphere of vanishingly small radius centred on x’, and U -~ V—uv, the region V with
v omitted.
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Since
| T x) S B 3(x" x;,) By (x")} dx”
v Jg

f T(x',x") dx" {3 P; d(x'—X; ) —n,By(x)} +0(¥) (2:22)
v ]/?
and the tensor is isotropic, we use

lim | T(x,x")dx" = lim | (V,V,-+&U)f(r') dx"

>0+ v v—=>0 J v

~lm}U [ VEf(r)dx" = —4rU f 5(x' —x") dx” — —4m U,

v—>0

and obtain from (2-194) that
e(x)—&(x') = —4mU %{z P; o(x;,—X') —ng Py(x)"}
74
+§ fUT(x’, x") .{jZKPjﬁ(?(Xjﬂ-—x” —n, Py(x")}dx". (2-23)

We substitute this form for e(x’) —&(x’) into the right-hand side of (2-185).
Since m is the refractive index of the medium (and more precisely is the parameter m in
the solution (2-15)) it satisfies the Lorentz—Lorentz relation (I (6-9))

m?—1

m :%’” (na”a_{_né?]b) (1—'_0(”&7705))9 (224)
where 7, and 7, are the (isotropic) scalar polarizabilities of the ¢ and & particles: by
O(n%,n%) we mean monomials in 7,7, and 7,7, of degree v. From (2-24) it follows that

m*—1
47

(m2;2) (nang+nymy) (L+0(n,n,)),

so that with (2:23) in (2-18) the latter relation is
e(x) = 3(m*+2) %LT(X, x') .[{Z P; 3(x;,—x') —n, Py(x')}
: Tp

O 1) (1 0(1) | T ) (S By 005, %)~y By(x’) '} [
7p
(2-25)

The scattered field e(x) of (2:25) forms the basis of the calculations of the scattered
intensity from an illuminated two-component fluid which we make in §3 below; this in
its turn is used to derive the Einstein scattering relations for systems of small molecules in
§4. It therefore seems appropriate to interpolate here some interpretation of both (2:18)
and (2:25). The expression (2-185) is an exact consequence of our initial assumptions: it
shows that as a result of the gauge transformation from (2-4) to (2-6) the fluctuation of
the instantaneous microscopic field about its average value (€(X) or zero according as X is
illuminated or not) is interpretable as that due to a source ‘in the medium’ composed of
the excess fluctuation in the total induced dipole moment over a Maxwell polarization
derived from the fluctuation of the Maxwell field e(x’) —&(x’). This source is screened

50 Vor. 258. A.
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396 R. K. BULLOUGH

and radiates through the medium with the scattering tensor T of (2:184), not that of (2-194)
in vacuo.

In (2-25) the fluctuation of the Maxwell field no longer appears explicitly; but its con-
tribution to the total scattering is included in the extra factor (m?+2) and by terms
O(n,n,). Discussion of the factor ¥(m?- 2) has previously interpreted it as a Lorentz internal
field factor and arguments for its rejection or retention have been internal field arguments
(cf. e.g. Ramanathan 1927; Cabannes 1929; Yvon 1937; Zimm 1945; Fixman 1955).
But it is a multiple scattering term and can be interpreted as an internal field factor only
for the screened quasi-particles ‘in the medium’t Although screened quasi-particles in the
medium have an obvious if rather imprecise interpretation in the present context the con-
cept contains an element of danger because the remaining multiple scattering terms are
still important. To deal with these it is now possible to iterate (2-25) by using, for example,
the iterated expansions for ZP 3(x —X; ) nyPy(x') in equation (B11) in Appendix 2

of I: it is clear, however, that 1nternal field factors can be included or not depending solely
on the initial method of iterating (2-184).

The iteration of (2-25) brings in significant terms which describe scattering of amplitude
e(x) at X from scatterers at X” and X', and so on, and these imply a scattering intensity
involving three and more centres: indeed there is a one-to-one correspondence between
these terms and the multiple scattering terms with gauge (2-4). The advantage of the par-
ticular form (2-25), however, is that iterated explicitly up to O(n3#?) in the one-component
case (where (say) n, = 4n, 7, =7 for « = a or b) it yields an expression for the scattered
intensity which has been identified (Fixman 1955) up to a possible question of the inter-
pretation of the intensity in the medium precisely with that given by Einstein (1910)

namely ‘ EnV

om?
Z(S) = 89%2/14

k’TZ(an) [1—(u.s)?]. (2:26)

In (2-26) the new symbols are A = 27/k, £’ is Boltzmann’s constant, « the isothermal com-
pressibility of the one-component fluid; s is a unit vector in the scattering direction, u is
the polarization direction of the incident field E of amplitude £, as in (2-2¢); % is the dis-
tance between the scattering source and the collector. The identification uses the one
component form of (2-24) also iterated to O(n393), and the iterated form (2-25) in both the
one and two component cases offers the advantage that the factor [(m2-+2)/3]2 which
appears explicitlyf can be identified with the same factor appearing explicitly in (Im?/dn) ,»
in the case of one component or in the combination of derivatives in the two component case
(cf. (413), (4:14) and (4:15) below); otherwise this factor has to be identified term by
term in its series expansion in the 7,5, as was the case in II. It is assumed in Fixman’s
one-component argument that all correlation distances between multiplets of four or
fewer small isotropic molecules are small compared with 1. Equation (2:26) is therefore
strictly comparable with the equation (4-27) we obtain below for the two component case.

1 In the one-component system for which n, = 0 the quasi b-particles have ‘polarizability’ =~ (m?—1)/
4mn, ~ 4(m?4-2) 9,: thus the isolated b-particle of polarizability #, has an apparent internal field factor

[4(m?+2)]2 The Lorentz factor therefore comes in squared (cf. §3).
1 See preceding footnote.
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MULTIPLE SCATTERING OF LIGHT BY LARGE MOLECULES 397

3. THE SCATTERED INTENSITY FROM MOLECULES WITH LARGE OR SMALL
CORRELATION DISTANCES

We continue to assume the molecules isotropically polarizable and of two sorts a and 5.
From I (B11) we have in the notation of (2:-194) that

P; 3(X —X; ) = ﬁ(x)e?(x -X; )

Nl’ .
+0(X X ) {g f T, ) B(x) [kz: " —x,)

IR WAL ,
3 3o -x,) 0" x,) pl) y | ax’],
ﬁ sﬁmltv"l
tﬂ—ksﬂ

so that (2-25) becomes
e(x) = 4m*2) 3 [ Toox). [ By 3(x)
P [ TOOX) 03y, () By () =0, 8y By () ax’|dx, (314

where 0p(X') = z O(x' —X; )

]/,11

n (3-1)

By (%', %) = z o —x;){ X o —x,) Szﬁﬂzqm —x,,) 8(x"—%,) p(=) )|
P % s (3:1¢)
and we omit O(n272).

The scattered field e(x) is determined by a Hertz vector
1 x ' ’
#x) = 3 +2) 3 [ 2 70| By 350

-FZJ‘ (%', X") Angdg, (X, X”)P(x” yrly(Sﬁ(x”) x” }dx”] dx’ (3-2)

and so is accompanied by a magnetic field

h = Va8 = im?, VA &, (3-3a)
We require for h then

imky Van [m2 f (r) By(x')] = iko(df/dr) (s Bp(x")), (3:30)

where 8 is a unit vector in the direction of r, that is 8 =1r/r.
Asymptotically, i.e. for large enough 7,

df(r 1 .\ e ikr ) e~ 1kr
—{-i’(;v) :(—~——1k) -T~—~1mk0f-r, _ (3-4a)

-
whereas F(x, %) = m-2(V, V,+k2U) ¢y ~ k3(U —s8) e~ 1071, (3-45)

We use the results (3:3) and (3-4) to compute the asymptotic form of the complex Poynting
vector

p = [eah*+e*ah]/16m

50-2


http://rsta.royalsocietypublishing.org/

. \
e A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
r’// A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

398 R. K. BULLOUGH

at an unilluminated point of the medium: * denotes complex conjugate. Because scattering
leads to extinction m is complex and so is £. We shall need according to (3-4.a, b)

[K3(U—s8) citrr=1] a ket ikrir T8 2 P (x1) | (3-4¢)

and its complex conjugate: here r, = |x; —x| and as usual 7 = |x'—Xx].

Define an origin in the illuminated region a large distance %t from the field point x in the
unilluminated region: assume the linear dimensions of the illuminated region are small
compared with R. Then

emi(/:r—lc*r])(rrl) -1 0 e ~i(kr—"F*ry) m~2. (34_ d)
We also need

u.(U—ss)a(saru) = (u—(u.s)s)a(sau) - [1—(u.s)?s. (3-4e)

We now use the explicit solutions (2-15) for the waves of polarization P; propagated
through the medium to evaluate the complex Poynting vector p in the form

P(S) ~ (m -+ m*) (k§/167%2) [4(m2+2) |2 [1— (u.8)?] {I, + I, -1}, (35)
where

Lo [ [ oo e iS50, 8, (xi) Py P, dx, (3-6a)
1 7

Iz — f f e~ ik(r—r1) e—ik(z'—zi)ju . T(X/, X”) .uem ikE"=2)
Viv Vv

X [% g % (npP, 05, (X', X") — 1,1, 0,(X") Pg) Pi¥ 05(x1)] dx” dx’ dxj, (3-60)

I~ J f etikirn—1) o +ik(zi~z) fu_T* (x), X)) . uetirG—2D
VY
X [% 2 %Fﬁ%(x') (P, 0,5(X1, X)) —nyn,0,(x7) P3)] dxydx| dx’. (3:6¢)
Y

In deriving (3-5) we make two assumptions : we note again and discuss later that m is complex
so that the square of the modulus of 4(m?+-2) appears outside (3-5). To abstract the pure
real factor (m+m*) out also we assume that £ is real in the exponents of the exponentials
under the integrals over V and V] in [}, I, and I,: these exponentials should really be of the
form exp [ —i(kr—k*r)) —i(kz’—k*z})]. We can of course abstract the factor (m-m*)
from the terms leading to I, by using the symmetry of the remaining part of the integrand
of I, in x| and X’ and relabelling these quantities, but to avoid complication in the terms
leading to I, and I it is simplest to note that .#m ~ 10-°%#m and adopt the forms (3:65)
and (3-6¢) with the factor (m+4m*) isolated: then, as we now require for p pure real,
I, = I¥. The second assumption is that #(x) of (3-2) is parallel to u the polarization direc-
tion of the incident wave E of (2-2¢) and hence that of P,(x) according to (2:15). This
assumption will not be true for an arbitrary configuration of the molecules of the system but
the step will be justified for the average Poynting vector if we show that the averages of both
I, and I are of the form u. J . u, where J is an isotropic second rank tensor. This we demon-
strate below. Both I, and I; depend on the three particle configurations X}, X', X" and
x’, X}, X|. If we extend the calculation to include correlations of four particles it is no
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longer true that we can simply treat & as though it is parallel to u: correlations between four
and more particles can therefore yield some depolarization of the scattered light, but we
shall not consider this here.

For the average Poynting vector, we observe that

(0p(X") p(w)) = 0, {d5,(X",X") p(w)) =0

and define <Z,§3(Xfﬂ'“x’> 3(Xky—--—xj)/)(w)> = ngn, 8s (X', X1), (3:74)
s,
XTI 80, - 3k, <) 0, X p()) 1y 1, 85s(X X', X0), (370)
J v ks

kﬂ=0=jﬂ,ly=l='k7,j8=t=lé\
to obtain in terms of the co-ordinates appearing in
(05(x") 8, (x1) p(®)) = npn,(gp, (X', X1) —1) +n,0(X" —X1) 0y, (3-84)
and in terms of the co-ordinates appearing in [,
(9, (X', x") 05(x}) p(w)) = npm, ns(8ys(X’, x', X)) —&sp(X1, X') g4, (X', x"))
+ngn, 0(X"—X1) g4 (X', X") 8,5, (3:8D)
in which the d,, and d,, are Kronecker ¢’s. A natural extension of the notation in (3-4¢) is
r=x-x, r'=x"-x'; r=x—X, rj=Xx]/—X].

But it is easy to see that [; = I in (3:6): relabel 0,7,/ as y,/,8 in I, and assume the 7,
are purely real. (We note below that they are actually complex, but they are certainly
real to the order we investigate in detail here, and their imaginary parts can in any case
be neglected at this order in the polarizabilities.) Thus we can work with the explicit
forms of I, and I, alone and need use only the triplet x’,x",x;. To simplify these
integrals we change these co-ordinates into ones relative to X" and adopt the new notation

r'=x"-x';, r=x-—x; (3-9a)

this symbol in that sense again. Then, with this new definition of ry, g, (x’, x}) in (3-8a),
and implicitly contained in the average of [}, depends on 7, = |r,| alone—because of the
assumed isotropy and homogeneity of the system—whilst g,,(x", x}) implicitly contained
in the average of I, depends only on |Xj—X"| = |r,—r’|. Further, for the same reason,
84,8(X',X",X}), which by (3-85) is contained in the average of J,, depends only on the
two vectors relative to their common point X" and symbolically

Epys(X, X, X)) = gyi(X] —X', X" —X') = g, (1, 1) (3-90)

From (3-84) we now obtain for the average of I,

U p(w)) = V{% nyP,P §+ﬂ§ynﬁnyPﬁP 3 f L&ay(re) = 1o (KSr) drl}, (3:10)
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400 R. K. BULLOUGH

where j,(§) = sing/f, S -+ s—-s,1 with s, the direction of incident light-— the z-axis from
(2-2¢) ——and we use the fact that a three dimensional Fourier transform with kernel e~ 18-
is taken of a spherically symmetric function (we can eliminate the angular integrations and
again restore them by taking a transform with kernel j,(£S7,)). V is the volume of the
illuminated region.

From (3-8) and (3-9) we obtain for the average of (3:65) (- I of (3-6¢))

<]2/)(’(ﬂ)> e If{f e—-ikS,l‘lf u .T(Xl, X”> .ue“iké'
L/ U/
x [% g % NPy P S npn,np{gss(T1, 1) —gp(11) 85y (1) —gys([ry—1'[) 4 1}] dr'dr,

|_f C—iks .l‘lf u. T(X/, x//) . ue_ikgl
v U’
<3 2P, Py mamy 0K = X4) (g, (1) 1) Jdr” drl}: (3:11)

where (' = 2" —2"is the ‘zcomponent’ of r' = (X" —X"). We observethat (3-11) isa typical
three-particle scattering term; the first integral describes the average scattered intensity
from sets of three distinct correlated point scatterers; the second describes the scattering
from sets of single particles by a process which involves a single correlated intermediary
and is a part of the transformation of the Lorentz radiation damping field in a different
guise noted in §2. We note also that the prime sources indicated by the presence of the
P,, Pyin (3-11) and whose magnitude satisfy (I (8:1) and I(8:6))

Py = §(m*+2) %Eo[l +n, UaJya 1,7, be +0(n%n2)] (3-12)
are enhanced by a Lorentz ‘internal field factor’ }(m?+-2) according to (3:12) but
apparently also by a second one through the factor multiplying the whole of p (and hence
its average) in (3-5). This emphasises again that simple considerations based on the ideas of
the Lorentz field have no validity when the effect of multiple scattering is included: this
factor is one of the two seats of discrepancy between the various forms of the scattering cross
sections referred to in §§1 and 2.

In (3-12) the quantities J, , are defined by
= f WX e g, (01— 1] dr (3:13)

They are complex with conjugates J7; the polarizabilities 7, which refer to the isolated

particles are also complex because they may be assumed to contain the effect of the Lorentz
radiation damping field of the isolated particle (I§2). In systems of correlated particles

1 If 0 is the scattering angle S = |S| = 2 sin 40 and the argument of the kernel is kSr, = 2mk,r, sin 30.
When the correlation lengths of the gy, are ~ 27ky! the integrals in (3-10) depend on 6 and modulate the
final scattering envelope of the system. Thus observed scattering envelopes can be (and are) used to deter-
mine correlation lengths. It is therefore important to point out that the argument kSr, of the kernel j,(kSr,)
takes this form as a direct consequence of the gauge transformation from in vacuo to the medium. The
corresponding calculation of the scattering in the formulation in vacuo shows that 2mk,r, sin 36 becomes
ko(1 —2m cos 0 +m?)? in agreement with this same form given by Rosenfeld (1951). From one point of view
we can interpret this as a direct consequence of the influence of multiple scattering on the scattering en-
velope and infer that multiple scattering can introduce errors into the estimated correlation lengths in
both one and two component systems: these errors are in addition to those peculiar to the two component
system considered in §§6 and 7. They are clearly important but they obviously hinge on the relative status
of the in vacuo and ‘in the medium’ formulations. It is hoped to treat this in detail elsewhere.
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the refractive index m is also then necessarily complex through the J,;, and the similar
terms from higher order correlations; but even in uncorrelated or very dilute systems
m is complex through the radiation damping described by the complex 7,. The extinction
of the transmitted waves Py(x’) of (2-15) which thisimplies is a second measure of the scatter-
ing and was used in II to derive the turbidity of multi-component systems of small molecules.

It follows from (3:12) that, with a real E, fixing the origin of phase, P, is also complex
and from (2-13) that &(x) and the Py(x) are not in phase when there is scattering—(2-13)
must however be modified when corrections of this order are considered. We note also that
the complex factor m in (3-44) means that the asymptotic forms of € and h are not in phase
because of the scattering they represent and by the same token the transmitted Maxwell

electric and magnetic fields &(x) and 5 (X) are not in phase when there is scattering: for,

essentially by (2:13) and (2-15), &(x) — Eyue it (3-144)
while it is shown (I (8:13)) that

H(X) = mEy(S,au) e k2 (3-140)
essentially because —ikyH# (X) = curl &(x).

We shall show elsewhere that even more remarkably scattering from a finite region
induces a modification from the form assumed in (2-15) of the E,(X) themselves, but this
may be loosely thought of as a modification induced by the shape and size of the scattering
region V and will not be considered here. It is, however, intimately connected with the
factor (m+m*) = 2% m in the expression for p in (3-5) : this factor appears also in the trans-
mitted Poynting vector calculated from (3-14)

m-+-m*

Po(So) = - [6%) A 7% (x) +6%*(x) n # (x)] = "I B, (315)

That such a factor should appear has been noted already (1§8): it re-appears in a re-
markably unsymmetrical way in the calculation of the turbidity from the extinction induced
by #m (cf. II) and leads to a discrepancy between the results of that calculation and the
calculation of turbidity we make in §4 below from the scattered intensity. The paradox
can be resolved only by modifying the solutions for the R(X) in (2-15) and must be treated
elsewhere. The calculation of scattering we make in this paper will there be shown to be
conceptually strictly comparable with that of Einstein (1910) and in the case of small
molecules permits a direct comparison between this formula and that we obtain in §4 below.
From (3-10), (3-11) and (3-12) we find that

(L + LA L)p () = {K+ (Ko +K§)} E3[5 (m*+ 2) 2V,
where Ky = (S nalnal2 3 mgmng [ Ly 0) = 11jofh7) ') (3:160)
2 Y
K, =~ { f ¢ ikSn f u. T(x,x") . ue s
4 U’ ’
X [% 2 % g, NN 5, N3 8sys(T1T) —8s5(r1) 85, (1) —gys(r'—1]) +1}
Y
3 S, 1500, 7008 1,) (g, 0) - 1)] )
Y

*‘{% % ”ﬂ”yl’?ﬂP’?y Jﬁ‘y+% % )8: ”ﬁ”y”aﬂ/ﬂ?;‘f s g fV[gp’y(T’) — 1] jo(kST") dr’}.
(3-16b)
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We may simplify K, to

K, = U e‘“iks~’1f u. T(x',x") . ue i
4 U’

X [% 2 % ”ﬂ”y”aﬁﬂﬁyﬂsg{gpy s(CT") —&55(r1) — 8oy (1) —&,s(Jt"—1,|) +2}] dr’ dr,
Y

Ff g e T ) we S Sl g ()~ ). (3160)
U’ Y

We have also from (3:5) that
Eg(m—+m*) Vkj 4

B(s) = (p(s) plew)y — BCLLI) Vb 2

3

[1—(u.8)?]s{K, K, +K§} (3:17)

The magnitude of (3-17) is the scattered intensity from systems of molecules with correla-
tion distances unrestricted except by neglect of correlations of four and more scattering
centres. The molecules themselves must be assumed small compared with 45! because only
dipole scattering is considered: but this means that the magnitude of (3-17) is a valid
scattered intensity for the two important cases of either small molecules with strong correla-
tion over a few molecular diameters or of large (e.g. macro) molecules consisting of many
strongly correlated units each small compared with 45!, In §4 we use (3:17) to give a
molecular argument for the scattered intensity from two component fluids with correlation
distances much less than 45! and thereby derive the phenomenological Einstein formula
in the corrected form suggested previously (1I) by a calculation of extinction. In §6 we
consider (3-17) for coiling macromolecules consisting of ca. 10° polarizable units each of
dimension ~ 10A: the r.m.s. radius of such molecules is ca. 3000 A > ky! with &, = 27/)
in the optical range.}

4. SCATTERING FROM SMALL MOLECULES: EINSTEIN’S SCATTERING FORMULAE

For small molecules correlating over distances small compared with a wavelength we
may simplify K, of (3-16¢) further by introducing chemical potentials #, and g, of the two
constituents: write y == 1/k"T, where £’ is Boltzmann’s constant, 7" the temperaturc. Par-
ticular cases of the recurrence relation of Buff & Brout (1955) arc

on ]
B Oy My Ty T, f 5o (1) —1]dr’, 41a
L], dwetnon [ Tgat) 1 (+10)
[a(n“ilﬁg“/’(r)):l o (Oyy - 05p) Mg 8, (1) J,-nan/,ngf [£ops(Ty, T7) —g,5(r")] dry.
Ixts) Vo v

(4:10)
From (4-1a) we derive

dn,n
[_(_zm/{)] (O 1 Oyp) My gty Mg f (s (r1) 1-gps(ry) - 2] dr, (4-2)
Ixps) vy
T A polystyrene molecule of molecular weight one million dissolved in benzene has an average end-to-
end distance of 1100 A; this may be a slightly more typical figure but it is still & k5.
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and from this and (4-15),

% % %:77,0’/7 ¥ [‘3*()%!8) {”ﬂny(gﬁy(r') -1 )}:l %: g ; Mgy ’7:?‘({(38,3 +387> nﬂnv[gﬂy(r’) —1]

X Ve xny
Angn, ng fV [8pys(T1s ") = 8ps(11) ~ &ys(r1) — &g, (r') 2] dry}. (4°3)

We usc 0" b when § a, 0"« when 0 = b: the partial derivatives with respect to yu;
arc taken at constant temperature 7, volume V and chemical potential of the second con-
stituent and we shall henceforth frequently omit explicit reference to the constancy of these
quantities in partial derivatives with respect to yu;: we shall indicate what is being held
constant in other partial derivatives however.

If, but only if, the correlation dis_tances of g, (1) and gg,4(r,,r’) are much less than 4!
we can replace e *8-" by unity in K, of (3-16¢). Then K, simplifies to

d .
K, ~ ¥ l::n n f u. T(x',x") -ue & ) —1 dr'}]
2 ¥ 2 2 20005 | Gy e | B T X) [g5,(r') —1]

. dngn,Js,)
XSSy VAT (44
F3U oy Y

Jy, 1s the integral defined in (3-13).
We may also simplify K;: we use (4-14) to deduce that

3(” ) ' ’
ssppr d s, [n 8, +ngn f [¢ (r)—«l]dr] (4-5)
/’Yﬂy(Xﬂa) ﬁyﬁ‘v Aoy TUETY | LAY
and when and only when k= is much greater than the correlation distances of the g4 (+')
- on
K= 33 F . (4-6)
EYTT o)
It is worth noting that because of the symmetry of the g4, in f and y
i dng L dng ’
dxng)  IXhg)

while because of the spherical symmetry of the g,, (') in r’ the lensor

Jﬂ B

Y

U'T(x', x") e ik gy (r') —1] dr’,

(which has diagonal elements Jy, - u.Jg, . u for cach of three orthogonal directions u)
is an isotropic tensor. It follows that d(ngn,J4,)/d(xus) 1s an isotropic tensor. This justifies
the step noted in §3 (between equations (3-6¢) and (3-7a)) in the case of small molecules
and implies its justification for large (macro) molecules. We can in any case argue that be-
causc the g, , and g, ;. describe a spherically symmetric system, i.¢. one isotropic at a molc-
cular level on the average, the average of I, - I3* (of (3-65, ¢)) must be of theformu.J . u,
where J is an isotropic second rank tensor and # of (3-2) is on the average parallel to u:
if we extend the calculation to include correlations of four and more particles the analogue
ofJ is an isotropic fourth or higher rank tensor, & is not necessarily parallel touon thecaverage
and the isotropic system of isotropically polarizable particles can in principal show somc
depolarization (cf. Fixman (1955) also).

51 Vor. 258, A.
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404 R. K. BULLOUGH

It follows from (4-4) and (4-6) that in the case of small molecules with short correlation
distances

o ng
K, +K,+ K3 :%:%’iﬁﬂy v ) JFEE% ("_ )[”/3 7(77,6‘7]7776 J/)‘y ]—ﬂﬂﬂyﬂsjﬂy)J

(Xﬂa (47)
An extension of the Lorentz—Lorentz relation is (I (7-2))
m2—1 .
mig STt 2y O () (48)
(compare equation (2-24) above), so neglecting O(nn3)
om? m?+2 d(ngn,J p,)
om? ( ) { gty gy } 49
) LT AL 73 o

The partial derivatives keep x = 1/’ T, V and p; constant. Taking instead of y, V, x4, and
4, as independent variables successively y, V, n,, n, and g, V, p, n, we have at constant y, V'

), 36, (), 3, 62,2, (2) ] o

a 2

We introduce partial molar volumes v, and v, per molecule of @ and 4 respectively: then

(d" ) Y (4-11)
anb bV Uy
We also need the identity (at constant x, V)
on Ixy)
__é‘_) ( i ) . 412
g(g(xtu'}/) Iy’ an(? ng A ( )

We then find from (4-10) that

om? B m2 -} 2\ 2 1 e B(n/,nyJ//) d(x,ug) vy I(XMs)
FARR S RUSRROES S D U il I e il

ixps) L oo,
(4-13a)
and that
i(@mZ) 2 o, ,m2--2[4 on
i —-wzlﬁﬂzw—{ =000 al® 5 T
\on,) ol 80xms) 7o =052l a(xty)
d(nﬂﬂyJ/;y Xis) vy Ixpts)] Oy } .
1%?% (3 —v,v, 77a)77ﬂ77/ S :H: anb Ua” (772 ]3 |- (4:130)
Next (at constant y, V)
(W) om? (9(%)) 1l dm? (ﬂ@ﬁﬁz?)
8]\’;; Ny a(Xlu/)/l a Ny v 3(%1“/) \ 371 n
4nm2+2 dngnyd gy) 0
=y (‘*5‘”) {’Tu }"zzz”ﬁ’h' ' /EXT” )ﬁ/ (g;;ua)}’ (4140)
so that
&’m?) 2 m? - 2[4
...... ]67] PR
(&’N VN 3
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MULTIPLE SCATTERING OF LIGHT BY LARGE MOLECULES 405
From (4-13¢) and (4-144) we have also that

[ om? V om?
n ( ------ ) ( ) -+ c.c.] == 162 |-
ony, prva oN, X Vs Ny

{00210 1305 10y 4 3 3 St nyn, V8 ) [Aata) _te Hra)
By @

m"'—}«z

I(xs) o, v, on,
33 S0 (g v g nm, ) duss) '—Cc} (4-15)
il a a Ta)IpTy 3(Xﬂa) ana T C.Caf e |
We introduce the isothermal compressibility x
1 3V)
K = —= (- , 4-16
(%), (#:16)
ngk 1 /on on b on g,
i ), B,
X x\op x> Nas Np dxu,)) \op x> Na» Ny Ixpp)! \0p xs Nas Ny
. au v
Since ( “) — ( ) —,
3p X>Na> Np oN, XoD Nye
we have et iy +v My (4-17)
XA ) |

The terms O(n2 52) in the sum of (4:134) and «/y times the sum of (4-145) and (4-15) are

m2+24

1672 ~ { az
| 75— 2,05 11| x

b ok L =03 1) 18 07 mo e ) (419

)
With the aid of (4-17), (4-18) easily reduces to precisely

2+2 4{ * 371/,-» }
et = 1672

3 % § 8% 3,
on,  on,
We use here OTh) = )

The terms O(n3 73) in the same sum are

m2+24

m
2
167 3

K. (4-19)

162772—1—2

Mo —VyVa 113) gty — 5 LT
{ ’? Y )

X[(a(Xﬂs)_@ 9(xm)) o, KMy a(m)]
on, v, on, ) I(xu,) Xv, Oon

a

Ingn,Jg,) [ (9(Xtts) 0y I(Xths) ) Xﬂa ] }]
+X”a ”ﬂﬂ'y ‘_a@ ) [( 3”1; Ua 372 v, -+c.c. 4: 20)

We make use of the relations
kng i) | [9(xtt) dng 1901
Xv, on, " o, va oxw) s ( g

5[(_9(x#s)> 1 +nb (3(?(/‘3) @9(Xﬂa))_nbvb (%xm;))],@ any, T I(xus) vy I(xks)
v2 on, v, Oon, v2 \ dn, v, dxpp) L Ony v, On,

ad>
(4-215)

51-2

a
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406 R. K. BULL.OUGH
to recluce (4-2()) to precisely
"2 ' _Z O 4
167! } 2222 nEngN, (n/;n J/”y) 0y 5»(*,.(‘..] » l(m~’!7 r Zi (K, -K¥]. (4-22)
z > A(x ) : |

So we have the result

\(Bm?) 2 o, [n (9m) V(am) e ]
! 2)”/) /J.A'.l"l (I)(Xﬂb) IX ’ anh /1,;\',Vva a]va PNy o

om? 2 m? - |—2|4 = T
i - 1672 K, +K,+ K¥]. (423
Xl (9M1)xl Ny ! 3 &y ) d ( )
The left-hand side of (4-23) simplifies: we use
2 2
V(Bm) (Qm_) Kk tu, (424 a)
()Ml XV Ny (')/) XV Ny

and introduce the osmotic pressure |1 of solute h-molecules in solvent e-molecules; from the
Gibbs—Duhem relation dp-+ 3 nyduy 0
f

it follows that at constant g, dIl = n,du, (4-240)
all o n, [( on,

and ( -- =, ( b) == ”/ ot ) 4-253
(7”/; ) Ha VT Pnll fa: VT Y ( (Xlul)) ) sa VT ( )

Then (4-23) becomes

L, |/dm2 2 oIl om? om?\ * om? i2
R - W MR I e
X { I (9”]) pxl b 372 tar T § ! anl) mXx dl) § e * ( 8/ § i ( ))

X b Xoth
It follows from (3:17) that in the case when correlation distances arc much less than £°!
, e 4
and omitting O(nd7?) LRV (m+m) N
) 2563 R2y [t (.

8)?] 86, (4:27)

where G is the quantity in curly brackets in (4:26).
The flux of energy crossing a sphere 2 of large radius % in unit time per unit volume
of the scattering region Vis

1 -  E3k} * .
-fop(s).dS- sy (- m¥) C. (4-28)

Normalized against the transmitted intensity in the medium given by |Po(s,)| of (3-15) this
hecomes the extinction (- turbidity) 7 of the transmitted intensity:

HG .S_Zfi’f_'..T{n (dm 2 / oIl
T 67TX 34 3”[,) , nb<37&/))/,u,'/'

om? om? - omA\*  (dm? o  (Om? A
-k [71,) (dn,)) ( N )1 "hh demy, ((?"/,) ( 9 ) o ] !(-—9/;) . ,,,,A a (4-29)

5. DiIsCUSSION OF THE SCATTERING GROSS-SECTIONS FOR SMALL MOLECULES

We first compare the form (4-29) with that obtained in the previous paper, 11, from the
imaginary part of the refractive index: neglecting differences between the squares of thc
real part of the refractive index and the square of its modulus-—which quantitics and their
derivatives differ by O(k;%72) ~ 10-%° which is quite negligible—the expression (4-29)
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MULTIPLE SCATTERING OF LIGHT BY LARGE MOLECULES 407

confirms the existence of the ‘cross-term’ 2m,(dm?/dn,), ,(dm?/dp), ,, &' reported in
I1 in addition to the two other terms in curly brackets (that isin G of (4:27))7 : usually only
these two terms are quoted in the expression for the turbidity of a two-component isotropic
fluid (see, for example, Doty, Zimm & Mark 1945). Experimental evidence in support of
this additional term was adduced in the earlier paper: we note here that its existence, as
indeed the whole form of G, has been demonstrated up to terms O(n3 %), that is to one order
higher in n, 7, than the previous calculation of II. By a calculation of the scattered intensity
somewhat similar to that made here but for the one-component system Fixman (1955)
demonstrates that the one-component analogue of G, namely «[(dm?/dp)«~']? correctly
describes the effect of multiple scattering up to correlations between sets of four particles
and to terms O(n*p*) after allowing for depolarization: the author (Bullough 1964) has
demonstrated the same result up to O(n*y*) in the extinction (i.e. a calculation of 7 through
#m and has shown that, up to a question of the factor m~! noted in §§1 and 2 and in II
and which appears to depend on the boundary conditions, the result is numerically correct
up to O(n’y°) after allowing for depolarization. Both at this order and at O(n*j*) some
numerically quite negligible terms are neglected from the formal reduction of the multiple
scattering terms to the simple phenomenological result. It seems possible that the detailed
molecular theory is attempting to reproduce the exact form of the Einstein (1910) equations
——that is, it is even exactly generating the terms in the fourth order fluctuations whose
coeflicients depend on (d%(m?)/on?) , and (d3(m?)/dn?) ;. Since, for example,

nt[(3%(m?)[on?) ]* ~ n?[(9m?|on) 1]* ~ (4mnyp)?

we have to compare An/n* against An2/n2 or about (k'Tk/V)2 with (k' Tk/V) ~10-2]V.
(We note that V2 times An*/n* is independent of V.) We conclude with Einstein that except
near to the critical point these terms would certainly be entirely negligible, but the formal
identity of the omitted terms and these macroscopic expressions would be worthy of investi-
gation. Indeed close to the critical point such an investigation becomes entirely necessary.

It seems indeed that (4:23) and its one-component analogue are examples of a ‘trivial’
identity between the macroscopic derivatives of macroscopic refractive index and the
microscopic expression for these quantities: the final results are relatively so simple that a
transformation from distribution functions to the thermodynamic parameters early on in
the calculation might considerably reduce the complexity of the argument. A possible shot
in the one-component case is to Fourier transform the density and work with its Fourier
components as ‘co-ordinates’ instead of the particle components X; . This approach has
been used by Nozieres & Pines (19584, 6) for a many body system in which the particles
interact with the point charge potential 1/, but it is significant that even with this much
simpler potential they were obliged to neglect the phenomena of greatest interest here,
namely the real or apparent local field corrections. Indeed to prove up to all orders in
n,1, here what would surely be a very remarkable relation whatever level of ‘triviality’
its conceptional basis it would be necessary to cope with an additional complication in the
depolarization terms which arise by correlations between sets of four and more particles:
it seems fairly certain that these can always be absorbed into a variant of the Cabannes

T With n, = §, n, = n—§ (so that a,+n, = n) and 5, = 7,, the cross-term is necessary for (4-27) to
reduce to the one-component expression (2:26).
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408 R. K. BULLOUGH

(1929) depolarization factor with some alteration of the numbers appearing in it (Bullough
1964), but this suggests that the identity can hardly really be a trivial one. It is not known
whether a similar identity exists up to any order at all for multipole scattering of order
greater than two, nor is it known how far other many-body problems hinge on identities of
this kind. Certainly the precise identity we conjecture and have proved to first order here is
remarkable enough to make the question of a best choice of variables an intriguing one:
the transformation of the radiation damping term ‘in the medium’ which a like calculation
of the extinction demands is surely remarkable by any standards. We must take these
several points up elsewhere, however.

In support of the existence of the particular identity for dipole scattering we may here
nevertheless remark that in an isotropic system with spherically symmetric g,,(r) the
integrals J, ; are O(k*[;5), where [, is a correlation distance: it follows that they could in-
deed be neglected (as was done by Fixman (1955) and Mazur (1958) in analogous one-
component calculations). But it is clear they hold a natural place in the transition from
microscopic quantities; in the one component case at least, terms in four particle correla-
tions transform to macroscopic quantities in a similar way to these and can be neglected only
because of the small magnitude of n*5* relative to the zero order scattering which is O(n)?)
(np ~1/16 so O(n*y*) ~%9%, of the zero order scattering, but relatively large coeflicients
partially destroy the apparent numerical insignificance of these terms{). We may remark
also that terms in JZ; must be neglected in order to prove identity at the order n}7} in the
two-component case : these are presumably a contribution to the second derivatives of m? in
Einstein’s Taylor expansion or to the fourth order fluctuations. Whether the complete
identity exists or not our calculation here certainly demonstrates up to O(n3 53) the precise
equivalence of Einstein’s (1910) ‘macroscopic’ (phenomenological) fluctuation theory and
the theory of distribution functions in the grand canonical ensemble embodied in the re-
currence relations of Buff & Brout (1955).

As noted in §1 the expression (4:29) differs from the earlier result in II in the omission
of the factor 9m~1(m?+-2)~2 there obtained: that the factor 9(m?+2)~2 should be omitted
was postulated in IT by analogy with the argument for the one-component system embody-
ing correlations between sets of up to four particles, that is by including multiple scattering
(but with the gauge (2-4)) and investigating up to O(n*yp*). The gauge transformation in
(2-6) demonstrates in a remarkable way how this factor is a multiple scattering term in the
formulation from (2-1) in which the individual scattering process takes place in vacuo:
the ‘interpretation’ of this factor simply as a Lorentz internal field factor is therefore very
misleading.

More misleading still can be the ‘interpretation’ of the remaining factor m~! which
does not appear in (4:29): we note that such a factor must certainly appear if the factor
3(m--m*) ~ m is omitted from (4-27) as it was by Mazur (1958) and Einstein (1910) in the
one-component analogues of that expressioni. It is a remarkable fact that a calculation of
the scattering from (2-1) directly, with gauge (2-4), restores the factor m~! to 7 and is in
apparent agreement with 7 calculated from .#m asin I1: only when the individual scattering

T See footnote on p. 411.

1 Einstein was primarily concerned with the ratios of intensities but certainly computes these intensities
as squared amplitudes simply. He calls them a measure (MaB) of the intensity however.
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MULTIPLE SCATTERING OF LIGHT BY LARGE MOLECULES 409

processes are transformed ‘ to the medium’ of refractive index m (of which they are themselves
the source) by a gauge transformation to the gauge of (2-6) is the m~! eliminated from 7 as in
(4-29) ; then of course it must reappear as #(m+m*) in the scattered intensity of (4-27).
The paradox can be resolved only by modifying the solution for the E,(x) of (2-15) as noted
in §§2 and 3: whether or not the factor m~! should appear depends on a precise formulation
of the boundary conditions which determine the choice of the solutions =, or %;of the homo-
geneous equations from (2-3¢) and (2-12). Here we emphasize only that in the conceptual
scheme implicit in Einstein’s treatment of scattering the factor $(m+m*) ~ m must appear
in (4-27) and not in (4-29).

Superficially this means that molecular weights measured from intensities and calculated
with Einstein’s expression for the scattered intensity would be in error by an omitted factor
~m(~ 1-5); in practice the Rayleigh ratio is taken but it is then necessary to normalize
the scattered intensity against the transmitted intensity in the medium to eliminate the
factor. The situation is however further complicated by the methods of scaling the apparatus
measuring intensities, and the factor m is so closely related to the shape of the boundary of
V that we must defer discussion of this point also.

Apart from the factor (m-+m*) in (4-27), both (4-27) and (4-29) agree precisely with the
forms usually quoted as Einstein’s formulae for the scattered intensity and turbidity of a
two-component fluid except in the ‘cross-term’ in G of (4-27). Its presence shows that it is
not quite correct to divide the scattering into either that from the pure solvent depending on
K| (0m2]3p)y, ,, k71| or ‘excess’ scattering depending on #3|(dm?/dn,), ,|2. We may also note
that, at a molecular level, whilst a natural excess molecular excess polarizability (, —v,v;'7,)
emerges at first order in 7, in (4-13 @) this combination of the 7, seems to have no significance
at higher orders in 7,: this has important consequences to the theory of scattering by large
molecules where it has always been assumed that it is sufficient simply to add corrections
due to interference terms arising from a finite molecular size or correlation distance in the
excess scattering alone. We take this up in the following section.

6. SCATTERING FROM LARGE MOLEGULES

By a ‘large’ molecule we mean a macromolecule for which the correlation distance of
polarizable units small compared with £7! is itself strictly comparable with £~1. We intro-
duce the concentration ¢ (in grammes per cubic centimetre) of the solute ‘4’ in the solvent
‘a’. Taking the reasonable value dm?/dc = 0-1 cm?/g, we have

om? _ (om? 101
n, (ﬂaﬁ;)p, , = C (W)p’ . = 10"'¢.

Taking the rough estimate (dm?/dp),, k' = pIm?/dp ~ 1-0, where p is the density of the
fluid ( & 1) and we assume dm?/dp ~ 1-0cm?/g, we find that the first and third terms in G
of (4-26) or (4-29) have ratio

10-2¢2[n, (9)Ony) . ] 671 (61)
Since I = n,k'T+0O(n,) and ¢/n, == M,[N,,

I This quantity should of course be computed for the mixture but it is usually closely approximated by
the analogous quantity for the pure solvent.
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where M, is the molecular weight of the solute, N, is Avogadro’s number, it follows that the
ratio (6-1) s 1072 (¢ M, [Ny) [k Tk] ™' ~c M, g/cm?. (6-2)

This becomes large for the large polymeric solute molecules (M, ~ 10%) whose molecular
weights are determined by light scattering measurement. As long as the dimensions of such
macromolecules remain <€ £7! it is therefore more than adequate to neglect the ‘purc
solvent’ scattering in relation to the ‘excess’ scattering. Since the ratio of the first and second

terms of G5 107 {3 (M,/N,) [ Tx] "} ~ 10M, (63)

bi

the second term 1s negligible for M, 2 1000: more precisc cstimates show that it may signi-
ficantly affect molecular weights M, < 500 (cf. IT or Sicotte & Rinfret 1962).

A coiling macromolecule with M, ~ 106--107 has r.m.s. dimensions ~10% x 10 A ~ 3000 A.
This exceeds k7! at optical frequencies by a factor of at least three, and even if this is extreme
factors of morc than unity arc common enough. Following Debye (1947) itis usual to replace

31—1) ]»1 L, Ony 1{ . J‘ ) L) ‘
My \ 5, CX T ’ y l’.-”) op\V ) - 1]dr’ ) (.4)
[ t (372,) o T X ‘}(Xﬂb),/,,, , X N V[%/}( )--1] f (6-4)

(where the first relation follows from (4-25) and the sccond from (4-14a)) by

Xy [1 + ”bf [gs(7") - 1] Jo (RST') dr,]: (6-5)
v

where S - s—s; as in §3. The ‘excess’ scattering is implicitly taken as the only significant
scattering and is given in the (‘well known’ according to Flory & Bueche 1958) form in our
notation

Ik (m* -m)V

_ , ‘ om?2\ > i -, N
p(s) - 256N [1--(u.s)?]s {(972;,)/, T”" [I " ”bf,/ [g,,(r) D)1 (BS) dr ][
(6-6)

We include the factor §(m* 4-m) which does not usually appear: within the terms of the
discussion in § 5 the factor is certainly required here.

Yet it is plain from the arguments of §4 which replace the microscopic polarizabilitics
of (3:17) by casily measurable derivatives of macroscopic refractive index that the formal
cquivalence of (3-17) and (6-6) is simply false when correlation distance and molecular size
approach or exceed £~!. In the first place we can simplify K, of (3:16¢) to the form of (4-4)
only when we can replace ¢~#5-" by unity in that cxpression: in the second place an ‘excess’
scattering term cmerges from (4-6) only when we can reverse the argument of (6-4) to
(6-5) for each of the four terms—-or three since two are equal—

G )= [ L) 11l (67)

The fundamental scattering equation (3-17) is correct up to first order in multiple scatter-
ing within the terms of our initial assumptions of polarizable particles and no multipole
scattering, but the lack of experimental or theoretical knowledge of the correlation functions
Z,4(r") when one or both of « and £ is an ‘a’ appropriate to the solvent and an even greater
lack of knowledge of all the g,,.(r,,r’) means that we can at the moment hope to dcal only
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MULTIPLE SCATTERING OF LIGHT BY LARGE MOLECULES 411

with the excess scattering: the Gaussian model of a coiling macromolecule with intermole-
cular solute interactions (Zimm 1948 ; Flory & Bueche 1958) seems the source of a reasonable
approximation to g,,(r") at extreme dilution and indeed this model can be used to derive the
intra-molecular three particle distribution g,,,(r,,r’) (Bullough 19634; Bullough &
Davison 1963). It remains to investigate here conditions, if any, sufficient to make (6-6)
a numerically valid approximation to (3-17); this we do below.

In so complex an analytic situation at the molecular level and in the absence of detailed
knowledge ofall the g4, (r;, '), except possibly g, (r}, r), we investigate here only the second
of the approximations which render (3-17) and (6-6) equivalent. Since we shall conclude
that this second approximation can lead to serious error in estimations of molecular size
and shape by Debye’s method and can even make significant error in estimates of molecular
weight M), and since the replacement of e~#5-" in K, of (3:16¢) is the same type of approxi-
mation as that involved in reaching (6-6) from the excess scattering term in (4:17) via the
reinterpretation of (6-4), we do no more than emphasize here that the appearance of the
simple macroscopic term [n,(dm?/dn,), r]* in (6-6) rather than a complicated expression
depending explicitly on microscopic correlation functions and polarizabilities, does appear
to introduce serious error comparable with that from the second approximation which we
here examine in detail. Essentially the first approximation is a neglect of multiple scattering
terms: the argument of this paper indicates that this is far from justifiable in condensed
media.f

If we ignore the multiple scattering terms K, and K ¥ in (3-17) we have for single scatter-
ing by quasi-particles in the medium that

— E2(m-+m*) Vk¢
p(S) = 0( 1671'%2) :

m2+24

3

[1—(u.s)”] S{ﬂZY nptty 57y Gy (8) +2 nglngl? (6-8)

with the Gy, (s) defined in (6-7). Since m is complex the G, are complex but it is consistent
with the argument of § 3 to treat £ in the Gy, as its real part § (m+m*)k,. For the quantity in
curly brackets in (6-8) we have ~

%”ﬂlﬂﬂlz+ﬂ’27”ﬂ”y”ﬂ”$ G, (8) = M|y —0p05 11,2 (141, Gy (8))
+nmy[ (1, — 0,071 14) 73 031 o] [0, 41,0, Gy(8)
A1,V Gap(8) ]+ |11 202 [0, (v, + 1,0, G (8) 41,0, Gy (8))
+ 1,0, (0, + 150, Gy (8) +1,0, G (8)) ] (6-9)

T While these multiple scattering terms should differ one to the other for small and large correlation
lengths it may be argued that these terms are nonetheless small in both cases compared with the single
scattering terms. This does indeed seem to be the assertion of Fixman (1960) in discussing scattering from a
one component system close to the critical point. But these terms cannot be small in the case of small corre-
lation lengths at least: for in this case we could take for [#(9m?/dn)]? in the one component case just

[4(m?—1) (m*+2)]%

Carr and Zimm (1950) show that these two quantities differ by as much as 35 %, for pure liquids like carbon
disulphide (m = 1-632). For long correlation distances the relative importance of these terms could well be
enhanced: it is therefore remarkable that, for example, the Ornstein—Zernike theory of critical scattering
shows the good agreement with experiment that has sometimes been reported. There are many examples
of its failure however (see references quoted by Fixman (1963)). In connexion with critical scattering the
footnote on p. 400 seems important.

52 Vor. 258. A,
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From (4:13), (4-14) and (4-15) on the assumption that the terms from K, (of O(n27%))
in these expressions can be neglected—and we repeat that this approximation is probably
not valid—(6+9) into (6-8) yields

—« EXm+m*)Vk p o || I
(8) = 2 g [ (w878 (1, Cun(s))
om? V (om?\*
—|~[n (~—) — (—) —]—C.C.] v, +n,0, Gy, (8) +1,0,G, (S
b on,, v Va oN, -~ [V + 7,0, bb( ) »(8)]
V (om? 2
oo a) | Dratalou 0, Gan(8) 100, Goa(s))
0,0, 1,,G1(8) + 1,2, Gun(8))]]. (6:10)

Equation (6-10) reduces to (6:6) if and only if (since m? does depend on n, and N,)

3m2) V (Bmz) :I
M\ 7.~ — v +c.c. |[v,+n,v,G,,(8) +n,0,G, (8
[ (), o (), o JmsmoGus (8]

Yq

2
[nava(va + nbvb Gab(s) +na Vg Gaa(s))
1,0, (0, 1,0, Gy (8) +1,0,Goy(8))] = 0. (6-11)

n V(9m2

Va ajvc) XV, Np

Define U, by V with a small region of volume v, about the origin omitted : we shall identify
these v, with the partial molar volumes of kind o as before and we assume that v, <£~°
whilst the correlation distances are assumed ~ £~!. Implicitly we therefore identify the small
polarizable ‘molecules’ of volume v, with equivalent polarizable sub-units of a macro-
molecule. The equivalent random links of Kuhn & Griin (1942) have linear dimensions
10 to 20 A or more and the macromolecule may contain 10* to 10° of these units. Theintra-
molecular correlation distance is ca. 3000 A and the intermolecular correlation distances
between solute molecules must exceed this. At concentrations of 1 or 29, these intermole-
cular correlation distances could considerably exceed this figure (compare, for example,
the rubber-like model of such a solution adopted by Lodge (1956)).

Since g,, = 0 within a region % v, about the origin and j,(£S7) ~ 1 there,

Uy Gab(s) _l_nava Gaa(s) = Nyl Kab(s) +navaKaa(S) Uy (612&)
where K,4(s) — f (gus(r') — 1) jo (KS?") A’ (6:12)
and we have used NV, + 1,0, = 1.

Since g,5 = &gy Gap = Gy, (but it is of course not true that K,, = K,, unless v, ~ v,)
and (6-12) together with the analogous relation to (6-12a) with @ and b interchanged when
substituted into (6-11) imply

[Cy 4 Comyv,] [0, Ky (8) 41,0, Ko (8)] + Camg [ 1m0, Ko (8) +1,0,K,4(8)] = 0: (6:13)

C, and C, in (6-13) are the two coefficients of the terms in the G4 in (6-11). If (6:13) is to
have general validity it is to be true for a range of concentrations and derivatives of re-
fractive index. Then we must have that

1,0y Ky (8) +1,0, Ky o (8) = 1,0, Ky (8) +1m,0,K,,(8) = 0. (6-14)
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MULTIPLE SCATTERING OF LIGHT BY LARGE MOLECULES 413

Were (6-14) true for all wavelengths 0 to co we have immediately from the Fourierinversion
theorem that within U,, a region in the two-body space of one a-molecule and a second

molecule .
N4Ve8aa 1V 8ap = 1 :}

. e 6:15
likewise in U, MUy 8oa+ 1080, = 1. (6:16)

According to superficial arguments leading to (6-6) we have neglected ‘pure solvent’
scattering proportional to k&' T" = «[x. If we add the two terms in «/y in (4-27) to the right-
hand side of (6-6) p(s) reduces to the form of (6:10) now, if and only if,

navagaa+nbvbgab = (]a(r) +Kk/ Ta(ﬂ) ]

6-16
NaVa8pa+MpVs&ps = Up(r) + k' T(Y(r)," ( )
where d(7) is a d-function satisfying 4ﬂfw 8(r) r*dr =1 and
0
U,(r) =1 (r>radiusofv,),
=0 (r <radius ofv,).
Equation (6-16) is to hold over the whole of two-body space; it implies
1,0, [ (gua—1) A4y, [ (g —1) dr’ — kK T,
(6-17)

vb‘|“”avaf(§bu“1) dr/—{“'nbvbf(gbb'"l) dr’ = «k'T,

which are indeed relations implicit in (4:17). But equations (6-16) are microscopic con-
ditions between the correlation functions themselves and are not macroscopic relations
between the space averages of the correlation functions and measurable thermodynamic
parameters as are (6-17). In particular (6-15) #mplies an incompressibility condition (or
neglect of terms in k&’ T") ; but neglect of terms in «&"T does not imply (6+15)—the micro-
scopic conditions (6-15) are far more stringent.

The conditions are indeed over stringent in that, in practice, for fixed wave length A,
there is a cut-off at a maximum scattering angle of 7, £|S| < 4mmA-1, and we obtain instead
of (6:15) the pair of equations thatin U, for o = a or b

f[”avagaﬁ(f') Fp0p84p(r") = 1] (e 1) dr" = 0 (a = ), (6-18)

in which J(r) = (k3/87) f eiko-t o

ol <2
when £ — 00, J(r) = (r). The function J(r) has a first zero at the smallest non-zero root of
tan 2kr -~ 2kr, i.e. at 2mkyr = [m, where 1 <[ < 2. The condition (6-18) is much coarser
than (6-15) and leads to the conclusion that (6-15) is necessarily true only ‘on the average’
over regions of dimensiont ~ [A/4m: thus we require only that

fU (nzx Uy goca + 72/): vﬂgocﬂ) dr, - Ua, A (OC “F ﬁ) )
as A

1 If the cutofl is taken at scattering angle §, < 7 the dimension ~ [A/4m sin {0, and - co for pure for-
ward scattering 6, = 0. '

52-2
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414 R. K. BULLOUGH

where U, , is any roughly spherical region of that volume and radius = /A/8m within the
region U, defined above. If we replace the small sphere of volume v, at the origin of U, ,
and U,, then calling U, ,+v, = V), we have

va+f (navagaa+nﬁvﬂgaﬂ) dr, = I/)t+Kk/T ({Z =+ /6))3 (619)
Va

where we introduce «k' 7" = k' Tf d(r) dr analogously to the step from (6-15) to (6-16).
Va

When the dimensions of ¥} greatly exceed the correlation lengths of the g4, (6-19) is the
same as (6-17). However, for large macromolecules the intramolecular correlation dis-
tances are ~ 3000 A and it is this fact alone which makes the shapes of these molecules
accessible to investigation by scattering. It is clear that these measurements can be inter-
preted by the ideas of Debye (1947) and in particular by (6-6) if and only if (6-19) holds.
We emphasize that the radius of V), ~ [A/8m ~ A/8 and so is significantly less than a correla-
tion distance 2 $A. It follows that if the usual estimates of molecular size and shape are to
have any validity special packing conditions, namely (6-19), must exist for the two sets of
molecule in the system.

The conditions (6-19) and (6-15) are hydration conditions in the sense that in (6:15)

(noc vagaa+ nﬁvﬁgocﬁ) or (OC =+ ﬁ)

is the probability of ‘occupation of volume’in a volume element dr at a distancer from a point
known to be at the centre of a molecule of kind «; the condition (6-15) then asserts that this
occupation of volume is uniform on a molecular scale—or on the scale of the partial molar
volumes v, of dimension ca. 10 A. The condition (6:19) then asserts that, for «&'7 ~ 0,
the occupation shall be uniform over regions of radius ca. §A. The term x£'T simply intro-
duces a systematic excess occupation of volume. Equation (6-6) is therefore valid if, and only
if, molecules of solute are hydrated by the solvent according to (6-19). In fact the phrase
‘ifand only if” ignores the inadequate treatment of the terms K, and K¥ at the beginning of
this section: presumably hydration conditions like (6:19) must apply to the correlation
functions of multiplets of particles of any number or to combinations of these.

In the following section we attempt a numerical estimate of the possible error inherent
in using (6-6) to estimate the sizes and molecular weights of large molecules; the calculations
are necessarily rough because of our ignorance of the g, .

7. ERRORS IN MOLECULAR WEIGHTS BECAUSE OF NON-ADDITIVE SCATTERING
For solutions of large molecules it has been observed (Zimm 1948) that
i 8y = Ny Z(Z—1) yy,+ N3 22T, (7-1)
where N, is now the number of macromolecules per cubic centimetre (nof the total number
of b-particles in the region V), Z is the number of sub-molecules per macromolecule,

n, = N,Z and y,, and I',, refer respectively to intra- and intermolecular correlations be-
tween submolecules. From (6-6) we then obtain, following Zimm (1948), that

om?

p(s) - s0()[ (55) | Mtts) +- (s} (12)
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MULTIPLE SCATTERING OF LIGHT BY LARGE MOLECULES 415

where P() = [ 7l olkSP) dr’
14

and Qs) = | (Tyulr") —1)(kS1") i

We assume Z~1+ (1 —Z~1) P(s) ~ P(s) (for Z~ 10%) and C(s) contains the factors making
(7-2) equivalent to (6-6).

Both y,, and I',, can be expanded about their values y{% and I} at infinite dilution in
powers of the concentration ¢ of the solute &: if M, is the molecular weight of the solute and

N, is Avogadro’s number, ¢ = N, M, [N,. It follows that

M, =lim lpH [ [P(s ]! e
where H= CI(\?0 . [(3220 )p fj|2
S sy [(F) T

and following usual practice 8, is one of the particular scattering directions appropriate to
a scattering angle of {7,
S; = - UAS,,

(so that u.s, is actually zero). Since (7-2) follows from (6-6) with (7-1), the expression
(7-3) which is that usually taken is valid if and only if the hydration condition (6-19) holds.
We now show that the possible error in P(s,) when (6-19) does not hold is comparable with
the correction which P(s,) itself introduces into the estimates of M, from (7-3). We note
that for small molecules P(s) reduces to

| wtyar =1 (74

because y,,(r) is normalized to unity in (7-1): P(s) differs from one for large molecules.

The corrections to M, from concentration dependent terms in (4-27) in the case of small
molecules were given in II. For the additional corrections which are now the important
ones when M, is large we split off from the contents of the curly brackets in (6-8)

/}z},”ﬂnvﬂﬁ”;k G/,ﬁfv(S)’ (7'5)

where G, (s) f (gp,—1) (o Sr") —1) dr’

Then the remainder of (6:8) reduces to (4-27), while if the hydration conditions (6-15)
or (6:19) hold (7-5) reduces to essentially

nj (337”221)) b5(8)

neglecting terms in K, and K¥ as in §6.
52-3
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Now consider the case of extreme dilution of 4. The chance of finding a second sub-
molecule at distance 7 from a first one in the same macromolecule is independent of N, and
is proportional to Z--1. Then

np(gpy—1) = Ny Z(Z—1)y,,+O(N3) (7-6a)

with y,, normalized to unity as in (7-1). The chance of finding a pair of a-molecules r apart
will differ from that when n, == 0 by O(n,), that is

ng(gaa»‘l) - pg(b\aa”l) 1%V aa (SaY>> (7'617>
where p, is the number density of a-molecules and J,, is the pair correlation function
(normalized to a single pair) when n, = 0: y,, is also normalized to a single pairt. The key
point here is that the correction n,y,, in (7-65) is of order Z~! to the first term on the right
hand side of (7-64) when the functions y,,(r) and y,,(r) range through similar magnitudes.
The idea here is that near a s-particle there is a very high density of s-particles proportional
to Z—1: at comparable distances from an a-particle there is no such extra expectation of
a-particles unless of course the system attempts in more or less degree to satisfy a hydration
condition.
For g,, we assume the following: suppose that the molecule is not hydrated in the sense
that the probability of finding an ¢-molecule within a sphere of radius », about a s-sub-
molecule is zero, but that ¢ and 4 are uncorrelated for » > r so that g, = 1. We have

nanb(gab# 1) = NN, (T < 7.0)
=0 (r>rg).

Choose 7, such that $m r§ = uZv,, where Zv, is a volume of the submolecules in the b-macro-
molecule: g is an as yet undetermined parameter. Introduce the function
Yap = #1270y (1 <),
=0 (r> 1), (7-6¢)

so that [y,,(r') dr’ = 1. Then

Moty (Gap— 1) = = ity L0 0, - (7-64)
Grimley (1961) has given order of magnitude estimates of the fluctuations determined by
the n;n,(g4,—1) based on an unspecified analysis from the grand partition function: as far
as the important dependencies on Z are concerned the choices (7-6) are in complete accord
with Grimley’s estimates. In addition they must satisfy (6:17). We can easily achieve this
for the first relation in (6-17) because the compressibility in the pure solvent a is given by

fok T = o+ [(8,407) 1) dr's

then we can still choose the parameter p to satisfy the second relation of (6-17) which becomes
kk'T = vy —v,uZln,v,+v,Z
=1y + va[l "“/Lm’ava] .

1 We can expect that vy, is a complex of terms including, for example, one of the form p,(6,,—1) which
is O(p,) not O(1) at the very short a-a correlation distances. Nevertheless such a term is O(1) at the longer
correlation distances important here and its integral is O(1). The same remarks will apply to any multiplet
correlation functions (at infinite dilution) concealed in y,.
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MULTIPLE SCATTERING OF LIGHT BY LARGE MOLECULES 417

With (in c.g.s. units) kk'7T ~ 1072, Z~10% v, ~ 1072 and z,v, ~ 1 this makes 4 ~ 1.
As a final check of consistency we have for the first relation of (6:17) and g~ 1

kk'T = Uy +van;1p3 f((yaa - 1) dr’ +n;1 VoM fyaa(rl) dr’ ~ll’lnbv%Zf’)/abOJ) dr’

~ P20, ok Too [1—p V) —pZngid. (1)

a’va

Because of assumptions above of extreme dilution of 4 in g, i.e. n, < n,, we can see that
despite the large size of Z it is certainly not inconsistent to have y,, and [ y,,(r") dr’ of order
Z1to (Z—1)y,, and Z—1. (In contrast, if (7-7) were to be true at n,v,/n,v, ~ 1/10, say,
it could only be satisfied by taking n,v,m, [7,,(r") dr’ ~ uZn,v3).

It is worth noting that if the hydration condition (6-15) holds, thenin U, (when v, > v,)

n,v
nﬂvd(gaaal) - _“nbvb(gab“l> = —";[bf [nava(gba—‘lﬂn

so that ng Ug(gaa - ]) - n%v%(gbb—_* ]) 5
and if (0,,—1) ~ 0 in most of this region

MyVaYaa = M505(&op— 1) = nyV3(Z—1) 7, + O(n3),
so that y,, ~ y,,v2v;%2(Z—1). Thus y,, is necessarily of the same order in Z as (Z—1) y,,:
the hydration condition forces a preferential expectation of finding a second a-particle
close to a first as a direct consequence of the assumption of a preferential expectation of
finding a second b-particle close to a first. In contrast, when the hydration condition does
not hold it is even unnecessary to assume that both y,, and y,, be essentially unity in Z
as we did above except that then we require the function y,, explicitly: if y,, is such that
the hydration conditions are not satisfied we can still be left with additional terms to (6-6)
of the same order as those we compute below. We shall assume in the following, however,
that the choices (7-6) are sound in their Z dependence at least: these dependences then
agree with Grimley’s as we note.
Because of the small correlation distances which we assume for the pure solvent

WGl =, [1aal?) LikSP) 11 dr”

and is of order Z-! relative to
nyy, Gy = — piny, Zn, v, fyab(r,) [Jo(BST") —1]dr’
and n: Gy, = anfyhb(r') [Jo (KS¥')—1]dr".

Then (7-5) becomes to O (Z) (with 7, replaced by its real part but still written 7,

mto Z {1y [100(0") Lio(kS) =11’ —2un,v,1, [10(r) LiothSr) ~11dr’}). (7:8)

We could now choose for y,, the Gaussian chain model taken by Debye (1947) and later
workers, but because the essential point we make in this section is that it is not in general
sufficient to know only y,, explicitly and because we do not in any case know anything about
the real form of y,, in any practical case we simplify the argument here and take y,, = v,
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418 R. K. BULLOUGH

with y,, defined in (7-6¢) : this means that the macromolecule approximates to a spherc of
volume yZv, (or more precisely the two particle correlation function which is essentially the
convolution of the onc body molecular distribution approximates to a sphere). Then
(7-8) becomes
gyt e, {m(m-~ 201,0,7,) f o Lo(kST) —1]dr

f<rg
and for this model of the macromolecule

[P(s) 1] =t 20 [ ofkSe) ~1]dr

<7y

This means that instead of (7-3)

T lil_(_§12|[ Moy —2pm,0,m,) [P(8y) — 1177 )
M, — lim He 1+ (my—vpv711,)* —J . (79)
Since the magnitude of the ratio in the polarizabilities can differ considerably from unity
it is plain that corrections very much of order [P(s) —1] itself must be added to the simple
Debye correction [P(s) —1]. When the hydration conditions (6-15) or (6-19) are satisfied
and the terms in k£’ 7" are negligible the ratio in the polarizabilities becomes

>0

(=0 12)* _

(my—vyv71n,)?

and we regain (7-3). When the refractive index increment is very large,

( — U“‘l ) ~ .VA‘g.,*g ,Ql;_ (ﬂf_ﬂj)
My —VpVq Na) ® (m?+2)2 47 \ On, o
is very large and is approximately 7,: then (7-9) again reverts to (7-3). But for a typical
figure of (dm?/dc), » ~ 0-1 cm3/g and the assumption g = § (which is not really consistent
with the # ~ 1 required for consistency with (6:17) but the point of the example seems
valid) the ratio in the polarizabilities is approximately
3 mi—1 4m(m*+42)2  10nm,
mp, mi-+2 9(om?|0ny) v pye

10, (7-10)

where p, and m, are the number density and refractive index of pure 4; we use n,/p,c~ 1
when pure b has mass density ~ 1.

Possibly within the terms of this model, this ratio is extreme: certainly the model is too
imprecise to confidently assert from it that the correction this ratio implies can actually occur.
But the correction corresponding to a ratio of two (say) seems not impossible and even
this makes the Debye correction in error by 100 9%,. Thus if the assumptions of this section
are not too remote from actual situations we must conclude that the estimates [P(s) ~-1]
of the corrections to molecular weight M, which are contained in (7-3) can be meaningless:
then for the same reasons the estimates of molecular size from the dissymmetry are meaning-
less. The crux of the calculation here is that G, is negligible, by one order Z~!, compared
with G,, and G},. This assumption may be an extreme one, but if this is so it shows that the
hydration conditions are to this extent often satisfied—for we showed above that the hydra-
tion conditions demanded that G, and G}, should be the same order in Z: yet if they are still
not precisely satisfied, corrections of significant magnitude may still be needed to convert
(6-6) to the ‘correct’ equation (3-17).
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MULTIPLE SCATTERING OF LIGHT BY LARGE MOLECULES 419

Since the ratio of polarizabilitiesin (7-9) depends on the solvent for a given solute so should
the apparent molecular weight A4, : in practice this does not seem to have been observed.
This may be because the hydration conditions hold well enough or because if the example
leading to (7-10) is true the variation would be small unless the refractive index increments
show a sufficient change. The measured molecular sizes also seem to be consistent with
dimensions found by other methods though it is difficult to obtain estimates of experimental
cerror from the literature. It would therefore be of interest to use molecules of known M,
and dimensions to investigate the validity of (6-6): it may then be possible to infer the state
of hydration of a solute molecule in the solvent and thus to obtain information about the
correlation functions g,, and g,,. The theoretical treatment of scattering from large mole-
cules does not simplify as does the theory for small molecules given in §4: we must also re-
member therefore that the arguments of §§ 6 and 7 are based on single scattering so that the
validity of (6-6) would also give some information, rather unspecific from the present
treatment, about hydration conditions on the g,...

The author is extremely grateful to Professor L. Rosenfeld for extensive discussions of the
theory of multiple scattering.

[ Note added in proof, 8 June 1965.] Since going to press I have found the interesting paper
of Dr F. J. Pearson, Proc. Phys. Soc. 75, 633 (1960) on ‘The theory of critical opalescence
in binary mixtures’ which considers to the single scattering approximation a problem
closely related to that we have discussed here in §§6 and 7. This is not the place to discuss
the relationship of our two rather different approaches to this problem of long correlation
distances: it seems worth noting here, however, that Pearson’s ‘ condition for phase separa-
tion’ (his equation (12)) will, in our different context actually follow directly from the
‘hydration condition’ (6-15). However, §§6 and 7 here show that, whilst these conditions
are, for example, necessary and sufficient for the isolation of the ‘excess’ scattering, their
applicability to the quite general physical situation of large correlation distances requires
further investigation, both theoretically and, in the light of the conclusion of §7, experi-
rentally. It is hoped to discuss the precise case of critical opalescence elsewhere (cf. e.g.
R. K. Bullough, Proceedings of the Interdisciplinary Conference on Electromagnetic Scattering,
Ambherst, Mass. June 1965. To be published by Gordon and Breach.)
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